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Abstract – The Science Activity Planner (SAP) is the 
science planning tool used for the Mars Exploration Rover 
(MER) mission.  This paper begins with an overview of the 
software developed for MER and how it was used for 
science downlink analysis and activity planning.  The 
overview of SAP is then followed by a report on a number 
of new development efforts that aim to improve on the 
capabilities of SAP for future missions. The selected areas 
discussed herein include the application of geographical 
information systems in tactical downlink analysis, new 
strategies for distributed data access and planning 
support, a virtual field test capability to support “what 
if?” scenarios for new technologies and mission concepts, 
and the use of agile development methods to improve the 
development of Mars surface mission support software as 
a whole. 
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1 The Science Activity Planner 

 
 Figure 1. The Science Activity Planner with Downlink 

Browser in foreground, Uplink Browser in background [1]. 

 The science planning tool for the Mars Exploration 
Rover Mission is the Science Activity Planner (SAP), 
shown in Figure 1. SAP assists the Athena Science Team 
and their collaborators in two main areas: downlink data 
analysis and science activity specification.  Downlink 
analysis begins with viewing images and other data 
products, followed by the interactive specification of new 

science targets and activities.  The image views provide a 
contextual awareness for the scientist where they 
interactively specify new activities for the spacecraft and 
its instruments. 

1.1 Downlink Analysis 
 On each sol (Martian day) of operations, data arrives 
from the rover and is processed by the Multi-mission 
Image Processing Lab (MIPL) pipeline to produce data 
product files. These products include images and spectra 
along with metadata describing the state of the rover when 
the products were acquired. A SAP user chooses the 
products he/she wishes to view and arranges them as panes 
in a reconfigurable data visualization area called the 
Viewgrid (shown in the foreground of Figure 1.). Users 
can configure the number and relative sizes of Viewgrid 
panes in order to suit their needs, or add additional pages to 
the Viewgrid if more space is needed. The Viewgrid 
enables the user to display numerous data products 
simultaneously without the visual clutter that would result 
from a multiple window system. 

 Images acquired by the rover can be viewed in a 
variety of ways in SAP as shown in Figure 2. Individual 
images from the rover’s mast cameras can be combined 
into a collection that SAP will warp together on the fly to 
produce a panorama image. These panoramas can also be 
viewed in an overhead polar projection or an immersive 3D 
view that allows a user to position a virtual camera within 
the scene. 

 SAP provides basic image viewing features such as 
zooming and panning and image processing features such 
as high pass, low pass, and edge detection filters. SAP also 
provides a set of image analysis features that are tailored 
the particular needs of the mission science team. For 
instance, scientists use the color information returned by 
the Pancam instrument to assess the expected relative 
abundances of important minerals. SAP users can perform 
this kind of analysis by creating synthetic color images 
using arithmetic functions based on the available bands of 
an image. SAP also includes a hyperspectral visualization 
tool called the ImageCube that allows a user to analyze the 
rich dataset returned from the Miniature Thermal Emission 
Spectrometer (Mini-TES) instrument.   



 

Figure 2. Cylindrical (top), polar-azimuthal (bottom-left), 
and 3D (bottom-right) renderings of a mosaic of images 

acquired by Opportunity [1]. 

 When a SAP user selects an image to view, SAP also 
loads range data derived through stereo correlation. When 
a user clicks on a point in the image, this data is accessed 
and the user is presented with the position of that point 
relative to the rover in Cartesian and spherical coordinates. 
This range data can also be overlaid on the image as a 
color-coded elevation or range map. Images taken of the 
area immediately in front of the rover with the front Hazard 
Avoidance Cameras (Hazcams) are also accompanied by 
reachability maps indicating where the rover’s arm can be 
safely deployed. SAP enables its users to overlay this 
information to allow them to select suitable locations for 
in-situ measurements. 

1.2 Activity Plan Creation 
 SAP users transition from analyzing data received 
from the rover to planning new rover actions by using SAP 
to mark locations of interest. There are two types of these 
markers. Features are used to indicate objects of interest 
such as a boulder, a patch of sand, or a distant hill. Targets 
are used to indicate a specific location within a Feature and 
can be used as parameters in an activity. For instance, a 
scientist might create a Feature to name a rock “Pumpkin” 
and then create a Target called “Stem” near the top. 
Features and Targets are rendered in all SAP views and are 
immediately shared with all other SAP users to ensure that 
scientists don’t create Features or Targets with conflicting 
names. 

 After creating Features and Targets, a scientist 
switches to the SAP Uplink Browser (shown in the 
background of Figure 1) in order to create Activities for the 
rover to accomplish. Each Activity added to a plan is 

drawn from a predetermined set of Activity types. For 
example, one Activity type is used to drive the rover while 
another is used to take a picture with the rover’s navigation 
cameras. Once an Activity has been added to the plan, the 
user can customize its execution by adjusting the values of 
its parameters. The Activity used to request use of the 
Microscopic Imager instrument allows the user to indicate 
the point that should be imaged (typically a previously 
created Target), desired compression ratios, the priority of 
the data that will be acquired, and so forth. 

 Activity plans for Spirit and Opportunity are 
constructed in a series of meetings. On each sol, SAP is 
initially used by individual users who construct fragments 
of plans as Activities and Observations. These users meet 
in small Science Theme Groups that are responsible for 
integrating these fragments into a plan that reflects their 
particular scientific interests. Next, representatives of each 
science theme group meet in a large meeting called the 
Science Operations Working Group. This meeting is 
responsible for integrating the plans from each theme 
group into a single, authoritative plan for the next sol. This 
plan is refined further before it is transmitted to the 
spacecraft. At each step in this process, less suitable 
Observations and Activities are discarded and the surviving 
elements are prioritized to reflect their relative importance 
to the operations team. 

 SAP is designed to support this process of iterative 
integration and prioritization. The Uplink Browser contains 
a ViewGrid that is similar to the ViewGrid that exists for 
viewing images that was described above. By subdividing 
the Uplink Browser ViewGrid, a user can load several 
plans simultaneously and merge them by dragging and 
dropping Activities between them. This also allows users 
to refer to previous plans and reuse portions of them in new 
plans.   

1.3 Simulation 
 SAP also enables a scientist to simulate the expected 
effects of an activity plan. Critical feedback includes the 
amount of power, data volume, and time the plan will 
require, as well as the expected final position of the rover 
and the instrument arm. SAP also draws an “image 
footprint” on top of all image displays to indicate the 
region that is expected to be imaged by an Activity. All of 
this feedback enables a user to adjust the plan until it 
reflects his/her intent. 

 SAP employs an efficient approach to plan simulation 
in order to provide this feedback to the user in a timely 
manner. As the user constructs a plan, SAP maintains a 
sophisticated dependency graph that keeps track of exactly 
which Activity parameters will impact particular spacecraft 
states. This dependency graph allows SAP to determine 
exactly which parts of a plan need to be simulated when a 



parameter is modified. In practice, only a small portion of 
the plan is affected by any particular parameter change, so 
this dependency-based approach to resource modeling 
provides SAP a tremendous performance boost. SAP is 
able to simulate the effects of most changes 
instantaneously, providing the user immediate feedback 
and improving their planning efficiency immensely. 

1.4 Building on SAP: Maestro 

SAP was successful as a science analysis and planning 
tool.  After its initial deployment in support of the MER 
nominal mission, we dubbed the next version of the 
software “Maestro”.  We are now adding new capabilities 
to Maestro to further increase the efficiency of scientists 
for MER and future rover missions.  The areas we are 
currently focusing on are geographic information systems, 
distributed operations, virtual field tests, and agile 
development.  We will explore each of these areas in 
further detail in the following sections. 

2 Geographic Information Systems 
 A Mars rover mission such as MER collects images at 
an ever-increasing number of different sites on the 
planetary surface. The current state of the art in data 
browsing tools used in rover operations presents an image 
catalog in one of two organizational strategies. The first 
strategy is a temporally-ordered image catalog, where 
images are organized in a hierarchy based on time of 
acquisition. SAP and most current operations tools fall into 
this category. The other type of organization that has been 
used in operations is round-trip data tracking. This type of 
tracking produces a correlation between each image 
product and the spacecraft activity that was executed to 
acquire the image. Based on this correlation, an activity 
planner can review which activities have results received in 
full, in part, or not at all. 

2.1 Spatial Indexing 
 Spatial data indexing applied to Mars rover images 
and science data products adds a useful new cataloging 
modality for tactical data analysis. Spatial indexing of 
image products can serve to visually indicate where on the 
surface the products were acquired. An orbital image that 
covers a significant area of the rover’s traverse path can be 
annotated with the locations where surface images were 
captured. Queries for images can be expressed in terms of 
the location on the surface where they were acquired, using 
both the rover’s traverse path and the contextual surface 
features that are visible in the orbital image. The 
combination of these capabilities results in a map-like user 
interface that is highly intuitive (based on a person’s prior 
experience using maps), especially to the scientist-activity- 
planner whose training is in geology. To the geologist, 
using a map to place in situ observations and other results 
into a larger regional context is a fundamental tool of field 

work, and field geologists represent a large segment of the 
user community of operations interfaces for planetary 
rovers. 

 For each data product acquired, a Mars rover records 
its position and attitude at the time of acquisition. This 
information is part of the image metadata that is returned 
with the image in the downlink. As the rover moves 
through different locations on the surface, this set of 
locations is recorded and converted to a chain of coordinate 
frames, where each new frame is defined relative to the 
previous frame. The rover’s current position relative to the 
landing position at the start of the mission is obtained by 
concatenating all of the coordinate transformations back to 
the landing location. However, we would like to have a 
precise location of all of these rover positions in absolute 
coordinates on the surface, not merely lander-relative 
coordinates. New high-resolution orbital cameras such 
Mars Express’ High Resolution Camera (HRC), and new 
techniques for acquiring high resolution imagery using 
older orbital cameras such as the Image Motion 
Compensation demonstrated recently with the Mars Global 
Surveyor’s Mars Orbital Camera (MOC) can accurately 
locate landers such as the Mars Exploration Rover’s 
landing sites at Gusev Crater and Meridiani Planum. Such 
high-resolution images provide an absolute geospatial 
reference for the lander position, and all of the relative 
coordinate frames along the rover’s traverse path can 
likewise be determined in absolute coordinates by 
concatenating the frame information. In this way we 
compute the 3D and latitude-longitude location of every 
rover position on the surface. 

2.2 Spatial Databases 
 A spatial database is the foundation of a Geographical 
Information Server or GIS. With a GIS database, SQL 
queries are used to insert, update, and select entries in a 
relational database that can contain geometry information 
in addition to standard types of data such as text and 
numeric information. The types of geometry that a GIS 
database can support may vary from a simple 2 or 3 
dimensional point, to connected line segments or polygons. 
For our implementation, we use several of types of 
geometry: 3D points to represent locations where images 
were acquired in x,y,z space, 2D points in latitude and 
longitude coordinates to represent where on the planetary 
sphere images were acquired, and a polyline to represent a 
set of connected line segments with 3D endpoints that 
represents the path of the rover’s traverse. 

 For our implementation we chose to use the PostGIS 
spatial database infrastructure. The PostGIS spatial 
database has several advantages for supporting tactical 
operations. It is freely-available, and has long been proven 
capable of industrial application support. It is also open 
source, which makes customization of the framework and 



detailed understanding of the implementation 
straightforward. 

2.3 User Interface 

 
Figure 3. The Maestro Orbital View.  A MOC image of 

Gusev Crater, Mars is shown, annotated with landmark and 
rover traverse locations provided by GIS. 

 
 The GIS user interface (see Figure 3) renders an 
orbital image using a simple cylindrical map projection. 
The image can be resized to any arbitrary scale using zoom 
in/out controls. The image is annotated with a number of 
useful landmarks. Users can outline and name new 
landmarks of interest using a polygon drawing tool that 
stores the landmark positions in a database. For supporting 
rover missions, the rover traverse path is overlaid onto the 
image as a connected series of line segments connecting all 
of the waypoints along its traverse history. The rover’s 
traverse path overlay is also labeled to indicate the numeric 
designated of the major sites along the path. The labeling 
uses a greedy algorithm that places as many labels as can 
fit on the image to annotate the path while still remaining 
legible, depending on the current zoom level of the image. 
For image product queries, the user can click and drag a 
rectangular region on the map to search for image products 
that were acquired within that region on the surface. The 
query is executed against the GIS database and the 
resulting set of data products are presented to the user in a 
result table. The GIS queries are highly efficient since the 
PostGIS implementation maintains an R-tree data structure 
to optimize spatial queries. As a data product is selected 
from the query result set, its corresponding map location is 
highlighted with an icon. 

3 Distributed Operations 
 Centralized operations worked initially for MER 
because everyone was co-located in a single room for 
planning. However, as the mission progressed beyond its 
expected operational lifetime, support for distributed 
operations was required as scientists returned to their home 

institutions. This problem was addressed with development 
of Remote SAP [2].

 Knowing that future Mars missions will likely have 
operations lifetimes that will exceed the projected lifetimes, 
planning for distributed operations is prudent. The two 
features that are needed for distributed operations for 
future missions are distributed planning and distributed 
access to downlink data. By planning for distributed 
operations at the beginning, we hope to avoid some of the 
pitfalls and problems that were encountered during MER. 

3.1 Distributed Planning 
 In SAP, plans were stored on the local filesystem, 
which is a non-ideal situation when working in a 
distributed operations environment. Remote SAP still uses 
local files to store plans, but has a manual procedure for 
remote users to contribute to the master plan. While this 
works for MER, this begs a more effective solution for 
missions with longer operational lifetimes.  

 In our recent efforts, we are now using a relational 
database as the central point of contact for the storage and 
distribution of plans. This has the advantages of 
maintaining a single authoritative plan data store and 
supports collaboration, allowing all contributors to submit 
their pieces of a daily plan in an automated fashion. Using 
a database also allows for more robust querying of 
previous plans as queries can be built using any data 
available in the database. This is an improvement over plan 
querying in SAP, where the only available mechanism to 
find any plan was through a rigid filesystem directory 
hierarchy. 

 We are using a technology called Hibernate to handle 
the majority of the database interactions with a Postgres 
relational database. We have been using Hibernate to 
define the database schema and generate code for all or our 
core model objects. We significantly enhanced the code 
generation over the stock Hibernate code generation to 
better support both Java 1.5 and common capabilities that 
we have identified as being necessary for our development. 

3.2 Remote Data Access 
 For MER data was pushed out to the users by the File 
Exchange Interface (FEI) data file subscription service. 
Unfortunately, this method required significant investments 
of storage for data that may be accessed at best 
infrequently. To reduce the amount of data pushed out to 
users, the Maestro team is adopting a plan to treat 
downlink data more similarly to the web model. 

 All downlink data products will be available through 
a server.  When a client attempts to access a data product, 
the data product will be downloaded to the user’s machine 
and stored locally. Having the data stored locally gives 



significantly improved access times for the user. 
Additionally, this model allows the ability to bring a new 
collaborator into the project quickly without requiring the 
user to have all the mission data. 

 Storing the data on the user’s local disk carries with it 
the logistical issues of synchronization, disk space 
limitations, and local file system organization.  Fortunately, 
the first two problems are similar to the problems that have 
been solved by web browsers. File creation/modification 
timestamps can be checked to determine whether a file is 
stale or not. Having a separate file that tracks some meta-
data about downloaded files will allow us to manage the 
cache so that the user does not need to worry about running 
out of disk space. To handle the problem of locating the 
file, the filesystem directory structure that will be on the 
user’s local machine will mirror that of the server, which 
allows for a quick check for file existence to determine 
whether the file needs to be downloaded or not. 

4 Virtual Field Tests 
4.1 The Costs Behind Field Tests 
 Prior to launch of a Mars surface mission, a series of 
readiness tests must be performed in order to demonstrate 
the operability of the technologies used. In addition, 
science and engineering teams need to be trained in the 
tools and technologies that will be supporting the mission. 
Realistic field tests are conducted to address these needs 
involving a team of engineers who deploy a research-class 
or flight-prototype rover to an area similar to Martian 
terrain (e.g. Mojave Desert) to support remote science 
operations. 

 Performing field tests significantly increases the cost 
of a mission primarily because it requires a large effort to 
transport and sustain the necessary team and equipment at 
the test site. Additionally, these tests need to be conducted 
many times for months or years as each test generates new 
results, and as new technologies and operations techniques 
are tested and validated.  More training opportunities are 
also needed as the size of the science team for a mission 
grows incrementally over the course of years. 

4.2 The “Field Test in a Box”  
 Virtual field tests provide a way to dramatically 
reduce the costs of these actual field tests to a particular 
mission. Offering a "Field Test in a Box" experience that 
can be setup at any facility, the virtual field test can be used 
as a low-cost way to educate and train scientists and 
engineers or to demonstrate some aspects of operational 
readiness. It does not carry the large financial and logistical 
overhead of an actual field test. Of course, virtual field 
tests serve only as a complement to actual field tests since 
the need for field tests with actual hardware in a real 
environment is inescapable. However, the virtual test will 

provide a “jump-start” for scientists and engineers, 
enabling them to reduce the number of iterations out in the 
field both during training or technology demonstrations. 

4.3 RoverWare Architecture 
 RoverWare is an end-to-end virtual field test system 
that represents the integration of three existing JPL 
technologies: 

1. Maestro – The scientist’s user interface for downlink 
analysis and science plan specification. 
 
2. CLARAty (Coupled Layer Architecture for Robotic 
Autonomy) – a reusable software architecture that provides 
an extensive library of robotic functionality that simplifies 
the integration of new technologies onto robotic platforms 
[3]. 

3. ROAMS (Rover Analysis, Modeling and Simulation – a 
physics-based simulation tool for analysis, design, 
development, test, and operation of rover on planetary 
surface exploration missions [4]. 
 
 These three technologies are integrated as shown in 
Figure 4.  

 

 
Figure 4. RoverWare integration diagram 

4.4 RoverWare Description 
 Maestro enables users to determine what rover actions 
they would like to perform next based on the data gathered 
from the rover through a graphical interface. Users can 
specify a plan of action through the high-level rover 
command interface. These commands range from 
movement commands (DriveToLocation, DriveForward, 
ChangeHeading), to imaging commands on the available 
cameras (AcquireImage), and instrument deployment 
(StowMast, UnstowMast, ManipulatorMove). Different 
sets of rover interface commands can be specified 
depending on the functional capabilities of the rover to be 

Maestro 
Science Planner 

CLARAty 
Rover Control 

ROAMS 
Rover Simulation 

 Science plan 
 

 Rover commands 

Result data/images 

Result data/images 



simulated. 
The activity plan is then translated into set of high-level 
commands that are sent to CLARAty, where the actual 
low-level rover commands are issued to the (simulated) 
rover hardware. CLARAty’s main purpose at this point is 
to determine how to control the rover based on the rover 
interface commands. Depending on the technology 
integrated into the simulated rover, CLARAty has the 
option to utilize some of its technologies in its mapping 
from high-level to low-level commands. For example, a 
simple DriveToLocation command could just be a straight-
line drive to the given coordinate. However, CLARAty can 
also use a variety of obstacle avoidance algorithms to 
navigate the rover through an obstacle field to the 
coordinate. From the high-level planning perspective, when 
the user wants the rover to move to the target, it is the job 
of CLARAty to get the rover there based using its onboard 
navigation capabilities. 

 CLARAty feeds the set of low-level hardware 
commands it needs in order to achieve its goals to the 
ROAMS simulation. Based on physical models of the rover 
and the terrain, ROAMS simulates the dynamics of the 
rover as if it was executing on real terrain, taking into 
account physical factors such as coefficients of friction on 
differing terrains and how rock obstacles affect the wheel 
chassis. Using a 3D graphics interface called DSpace, 
ROAMS will display the simulated rover behavior in the 
given environment to the user (see Figure 5). 

 

Figure 5. ROAMS "DSpace" view of a simulated rover. 

 In order to close the loop, ROAMS reports back to 
CLARAty the success or failure status of individual 
commands. Based on the algorithm used, CLARAty may 
choose to re-issue a different command on failure. Also, 
some high-level rover interface commands may require a 
product to be returned back to Maestro, such as an 
AcquireImage command to the Hazcams. It is also the 
responsibility of CLARAty to package the data product up 
and send it to Maestro so that it can be processed and 
analyzed by the scientist users. 

 

5 Ensemble and Agile Development 
 Ensemble is an open architecture for the 
development, integration, and deployment of mission 
operations software. Fundamentally, it is an adaptation of 
the Eclipse Rich Client Platform (RCP), a widespread, 
stable, and supported framework for component-based 
application development. By capitalizing on the maturity 
and availability of the Eclipse RCP, Ensemble offers a low-
risk, politically neutral path towards a tighter integration of 
operations tools. 

 
5.1  Improving Mission Tool Development 
 The current approach used to develop mission 
operations software has produced a set of powerful tools 
that have enabled stunning successes for NASA. Many 
parts of the current development process are functioning 
well and should be preserved. However, improvements in 
the state of the art in software engineering as well as 
increasing demands from new missions have exposed 
several areas that deserve attention. The problems that 
Ensemble has been designed to address are outlined below. 

5.1.1 Brittle Interfaces 
 Historically, mission operations software has 
consisted of a set of largely independent tools that 
communicate with each other using files or socket-based 
interfaces. The interfaces between the planning tools on 
MER were a late addition that became the source of 
numerous problems. Several lessons-learned workshops 
from MER have identified these interfaces as an area that 
requires immediate improvement. 

 File and socket-based interfaces are notoriously 
difficult to test and debug. As a result, these kinds of 
interfaces tend to fail often. The most reliable interface 
between two tools is usually accomplished via direct use of 
the respective tools' application programming interface 
(API). The Ensemble approach ensures that many problems 
in the interface are discovered at compile time. 

5.1.2 Too Many GUIs 
 The number of separate tools used in the MER 
Activity Planning and Sequencing Subsystem (APSS) is 
also the source of a popular complaint because it requires 
mission operators to interact with many different user 
interfaces in order to get their work done. This slows the 
overall pace of mission operations and increases training 
requirements. 

 The complexity of mission operations makes it 
infeasible to develop a single operations tool capable of 
accomplishing all necessary tasks. However, Ensemble's 



reliance on Eclipse provides a common GUI framework 
that can contain GUI components from multiple tools 
developed by different teams. A mission can then easily 
reuse any component at multiple stages of the operations 
process. For instance, a data view that was historically 
available only during the sequencing phase of operations 
can be displayed and used at any time if that view is 
developed as an Eclipse plug-in. The result is a GUI that 
feels like a single tool to the user, but draws upon the 
resources of many development teams. 

5.1.3 Duplication of Effort 
 The tools in existing mission operations systems are 
designed to address the needs of a certain phase of the 
operations process. One tool is designed to accomplish 
science planning while another is used for command 
sequencing. However, certain capabilities are needed at 
multiple stages in the operations process. Unfortunately, 
the architectures used in current mission operations tools 
do not allow capabilities from different tools to be reused 
at multiple steps in the process. As a result, redundant 
versions of these capabilities are developed by multiple 
teams and inserted into separate tools. 

 This reuse is possible because of the manner in which 
Ensemble plug-ins deal with the spacecraft plan. In the 
past, the spacecraft plan has been handed from one tool to 
the next in a serial fashion. At each step, a single tool had 
exclusive control over the plan. In contrast, Ensemble plug-
ins interact as a group with a common model of an 
evolving spacecraft plan. Each plug-in can contribute to the 
plan whenever it is necessary, and each plug-in must 
respond appropriately to modifications made by other plug-
ins. 

5.1.4 Lack of Agility 
 Most development teams strive to make their tool 
applicable to multiple missions. This is a positive goal 
because it enables future missions to capitalize on the 
investment made by prior missions. However, it can also 
force a mission to accept and maintain capabilities that it 
doesn’t need. The popular “core/adaptation” model is an 
attempt to insulate different customers from customer-
specific requirements, but what if one customer only needs 
a fraction of the core? Currently, that customer is simply 
forced to accept the rest of the core anyway, along with the 
risk and costs associated with its maintenance. 

 As a multi-mission architecture, Ensemble also 
supports extensive reuse of components between missions. 
The vast majority of Ensemble plug-ins are mission-
independent, and mission-specific plug-ins are clearly 
identified. Ensemble is already being used to support 
Phoenix, Mars Science Laboratory (MSL), and several 

technology programs, and these customers share a large 
amount of code in common. 

5.2 Agile Development 

 SAP for MER was built by a small team of 
developers writing code mostly in isolation. Group 
meetings were convened only when pertinent issues arose 
regarding the overall system architecture or an API needed 
to be designed between components. This approach led to a 
system where each developer was an expert regarding one 
specific area of the system but relatively naive regarding 
other system components. Furthermore, it hindered the 
ability to perform integration tests on a frequent basis. 

 In developing the next generation mission operations 
software, the Maestro team shares a lab with three 
workstations configured to optimize the experience of pair 
programming (i.e. two monitors, two keyboards, and two 
mice per workstation). The lab environment along with the 
co-development of production code has greatly increased 
inter-team communication as well as transferred 
knowledge of the entire code base across all team 
members. Furthermore, through an adaptation of the twelve 
tenants of extreme programming, the Maestro team is able 
to remain responsive to all its customer needs – ranging 
from class-A missions to individual researchers. 
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